SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1973). B29, 154.

Acta Cryst. (1975). B31, 2877

Die Struktur von Bis-(1,2-benzochinondioximato)nickel(II)

VON I. LEICHERT UND J. WEISS

Anorganisch-Chemisches Institut der Universität Heidelberg, D 6900 Heidelberg 1, Im Neuenheimer Feld 270, Deutschland (BRD)

(Eingegangen am 29. April 1975; angenommen am 16. Juli 1975)

Abstract. Ni($C_6H_5N_2O_2$)₂, monoclinic, $P2_1/n$, a=3.856(3), b=9.461 (6), c=16.542 (12) Å, $\beta=90.45$ (6)°, V=603.5 Å³, Z=2, $d_X=1.83$ g cm⁻³. The structure was determined by standard methods and refined by least-squares calculations using 1173 independent nonzero reflexions to R=0.062. Ni atoms of the planar complex moieties form linear chains (Ni–Ni distance 3.86 Å).

Einleitung. Drehkristall- und Weissenbergaufnahmen ergaben die Symmetrie, die ungefähren Gitterkonstanten und die Auslöschungen. Die genauen Gitterkonstanten wurden aus den θ -Werten von 18 Reflexen nach einem Ausgleichsverfahren von Berdesinski & Nuber (1962) erhalten. Aufgrund der systematischen Auslöschungen h0l für h+l=2n+1 und 0k0 für k=2n+1 ist die Raumgruppe P_{2_1}/n ($C_{2_h}^5$) eindeutig bestimmt. Aus Diffraktometermessungen (AED, Siemens) wurden mit Mo Ka Strahlung nach der Fünfwertmethode ($\theta/2\theta$ -Abtastung) bis $2\theta = 60^{\circ}$ insgesamt 1173 unabhängige Reflexe erhalten, wobei Reflexe, deren Intensität $I < 2,58\sigma(I)$ war, als nicht beobachtet angesehen wurden. Die Intensitäten wurden in der üblichen Weise korrigiert, eine Absorptionskorrektur erfolgte nicht.

Die Lagen der Atome mit Ausnahme der H-Atome konnten einer 3d-Pattersonsynthese entnommen werden. Eine Verfeinerung nach der Methode der kleinsten Quadrate ergab zunächst mit isotropen Temperaturfaktoren einen *R*-Wert von 0,132, der sich nach Einführung von anisotropen Temperaturfaktoren auf 0,069 verbesserte. (Grösste Änderung/Fehler 0,015, mittlere Änderung/Fehler 0,003.)

Aus einer Differenzfouriersynthese liessen sich dann auch die Positionen der Wasserstoffatome ermitteln. Nach drei weiteren Verfeinerungscyclen, in denen für die Wasserstoffatome B=3 eingesetzt wurde, war der R-Wert 0,062. (Grösste Änderung/Fehler 0,138, mittlere Änderung/Fehler 0,009.) Für die Rechnungen wurde das X-RAY-System 70 verwendet (Stewart, Kundell & Baldwin, 1970). Tabelle 1 und 2 enthalten die Atomparameter, Tabelle 3 und 4 die Bindungsabstände und Bindungswinkel. Tabelle 5 gibt den Abstand der Atome von einer durch das zentrosymmetrische Komplexmolekül gelegten besten Ebene.*

* Die Liste der Strukturfaktoren ist bei der British Library Lending Division (Supplementary Publication No. SUP 31279: 7 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Tabelle 2. Ortskoordinaten der Wasserstoffatome $(\times 10^3)$

	x	У	z
H(0)	813 (17)	796 (7)	97 (4)
H(3)	797 (17)	449 (7)	44 (4)
H(4)	432 (17)	98 (7)	229 (4)
H(5)	202 (18)	336 (7)	244 (4)
H(6)	441 (17)	508 (8)	154 (4)

 Tabelle 1. Atomparameter der nicht-Wasserstoffatome

Alle Werte sind mit 10⁴ multipliziert. $T = \exp \left[-(\beta_{11}h^2 + \ldots + 2\beta_{23}kl)\right]$.

	x	У	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Ni	0	0	0	728 (7)	82 (1)	26(1)	-21(3)	14 (1)	4 (1)
N(1)	7457 (11)	72 (5)	956 (2)	745 (33)	100 (5)	33 (2)	-22(14)	12 (5)	6 (3)
N(2)	9353 (12)	1948 (5)	4 (3)	753 (45)	94 (5)	35 (1)	-40(11)	11 (7)	4 (2)
O(1)	6697 (13)	8974 (4)	1406 (2)	1262 (47)	113 (5)	35 (1)	- 39 (13)	51 (7)	12 (2)
O(2)	247 (12)	2833 (4)	9444 (2)	1193 (44)	95 (5)	41 (1)	-25(12)	52 (7)	12 (2)
C(1)	6594 (14)	1345 (6)	1190 (3)	617 (40)	110 (7)	32 (2)	-16(13)	2 (7)	2 (3)
C(2)	7635 (14)	2433 (6)	628 (3)	657 (41)	102 (7)	34 (2)	-13(14)	-2(7)	-2(3)
C(3)	6850 (17)	3873 (7)	806 (4)	809 (51)	102 (7)	50 (3)	2 (16)	22 (9)	2 (3)
C(4)	5096 (18)	4166 (7)	1487 (4)	869 (57)	122 (8)	56 (3)	-1(18)	28 (10)	-15(4)
C(5)	4081 (18)	3085 (8)	2043 (4)	879 (56)	157 (10)	43 (2)	1 (19)	25 (10)	20 (4)
C(6)	4775 (16)	1721 (7)	1904 (3)	766 (49)	142 (8)	34 (2)	-25(17)	9 (8)	5 (3)

$N_i - N(1)$	1.868 (4)	C(5) - C(6)	1.338 (11)
Ni - N(2)	1,860 (5)	C(6) - C(1)	1,424 (8)
N(1) - C(1)	1,309 (8)	O(1) - O(2)	2,480 (6)
N(1) - O(1)	1,313 (7)	O(1) - H(0)	1,32 (7)
N(2) - C(2)	1,313 (8)	O(2) - H(0)	1,16 (7)
N(2) - O(2)	1,318 (7)	C(3) - H(3)	0,95 (7)
C(1) - C(2)	1,445 (8)	C(4) - H(4)	0,91 (8)
C(2) - C(3)	1,427 (9)	C(5) - H(5)	1.06 (7)
C(3) - C(4)	1,346 (10)	C(6) - H(6)	0,96 (7)
C(4) - C(5)	1,432 (11)		,

Tabelle 3. Bindungsabstände (Å)

Tabelle 4. Bindungswinkel

N(1)-NiN(2)	83,6 (2)	C(1)-C(2)-C(3)	119,1 (5)
Ni - N(2) - O(2)	125,7 (4)	C(2)-C(3)-C(4)	118,6 (6)
Ni - N(1) - O(1)	124,9 (4)	C(3)-C(4)-C(5)	122,1 (7)
N(1)-C(1)-C(2)	113,1 (5)	C(4) - C(5) - C(6)	121,5 (7)
N(1)-C(1)-C(6)	127,1 (6)	C(5)-C(6)-C(1)	119,0 (6)
N(2)-C(2)-C(3)	127,2 (6)	C(6)-C(1)-C(2)	119,8 (6)
N(2) - C(2) - C(1)	113.7 (5)		, , , ,

Tabelle 5. Abweichungen der Atome (in Å) von der durch das Komplexmolekül gelegten besten Ebene

Ni	0	C(1)	-0,014
N(1)	-0,046	C(2)	-0,025
N(2)	0,018	C(3)	0,005
O (1)	-0,036	C(4)	0,014
O(2)	-0,037	C(5)	0,029
		C(6)	0,010

Diskussion. Benzochinondioxim (BCDH) bildet mit Metallen der 8. Nebengruppe (Ni, Pd, Pt) Komplexe der Zusammensetzung M(BCD)₂ (Mégnamesi-Bélombé, 1974). Im Palladiumkomplex sind die ebenen Komplexeinheiten so angeordnet, dass eine Kolumnarstruktur entsteht (Leichert & Weiss, 1975), d.h., hier liegen die Molekülebenen senkrecht zur Kette der Palladium-Atome (Pd-Pd-Abstand 3,202 Å).

In dem hier beschriebenen Nickelkomplex (Fig. 1) liegt dagegen keine derartige Kolumnarstruktur vor. Der Abstand der Nickelatome beträgt 3,856 Å und die Komplexeinheiten sind gegenüber der Nickelkette stark geneigt. Der Winkel zwischen der Ebenennormale und der Nickelkette entlang der *a*-Achse beträgt 61,8°.

Fig. 1. ORTEP-Plot (Johnson, 1965) eines Moleküls ohne Wasserstoffatome. Die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

Die Abstände O(1)-H(O) und O(2)-H(O), d.h. die Abstände in der Wasserstoffbrücke O-H-O wurden unterschiedlich gefunden (vergl. Tabelle 3). Die Unterschiede sind allerdings nicht signifikant. Da auch die Abstände Ni-N und N-O innerhalb der Fehlergrenze gleich sind, und der Abstand der beiden Sauerstoffatome O(1)-O'(2) nur 2,480 Å beträgt, kann, wie auch z.B. im Bis(dimethylglyoximato)nickel(II) (Williams, Wohlauer & Rundle, 1959) eine symmetrische Wasserstoffbrücke angenommen werden.

Herrn Dr Mégnamisi-Bélombé danken wir für die Überlassung der Kristalle. Die Deutsche Forschungsgemeinschaft unterstützte diese Arbeit durch eine Sachbeihilfe.

Literatur

- BERDESINSKI, W. & NUBER, B. (1966). Neues Jb. Miner. Abh. 104, 113-146.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL 3794.
- LEICHERT, I. & WEISS, J. (1975). Acta Cryst. B31, 2709-2710.
- MÉGNAMISI-BÉLOMBÉ, M. (1974). Dissertation, Universität Heidelberg.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). X-RAY 70, Computer Science Center, Univ. of Maryland.
- WILLIAMS, D. E., WOHLAUER, G. & RUNDLE, R. E. (1959). J. Amer. Chem. Soc. 81, 755-756.